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1. Introduction

Thin-walled beams with open sections constitute basic parts of many complex steel structures
and are extensively used in engineering applications when requirements of weight saving are of
primary importance. Due to their particular shapes, these structures are highly sensitive to torsion
and to imperfections. The instabilities are then the most important phenomena that must be
accounted for in the design. Nevertheless, it is well known that buckling does not always mean
failure. Therefore, it is necessary to understand the post-buckling behaviour and vibration
characteristics of buckled thin-walled structures under various loads. Although the vibration
behaviour of these structures has significant applications in structural engineering, the work done
in this area is generally limited to the pre-buckling range [1,2] and research on the vibration of
post-buckled thin-walled elements has received scant attention.
A non-linear model which accounts for non-linear warping, bending–bending and torsion–

bending couplings has been developed for the non-linear analysis of thin-walled elements with
presence of instabilities. Based on this model, the post-buckling behaviour of thin-walled beams
under both axial and lateral loads has been investigated [3,4]. This model is extended here to non-
linear dynamic analysis. The Galerkin’s method is used and a non-linear algebraic system is
obtained for the static equilibrium at moderate displacements. The post-buckled solutions are
performed using the Newton–Raphson iterative method. Using the tangent stiffness matrix
derived from the static solution, the small vibration analysis is carried out in both the pre- and
post-buckling regions. For fundamental frequency analyses, the load–frequency interactions are
demonstrated for various shapes at large ranges of loads. Closed-form relationships for the
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eigenfrequencies of bisymmetric and mono-symmetric sections are presented and an eigenvalue
problem is formulated for general section shapes.

2. Mathematical formulation

2.1. Kinematics of the model

In Fig. 1, is shown a straight and undeformed thin-walled beam with an open section that will
be considered in this study. The orthogonal cartesian co-ordinate (G;x; y; z) is considered where
the x-axis is parallel to the length of the beam and G is the centre of the cross-section. The shear
centre with co-ordinates (yc; zc) in Gyz is denoted C: Consider M, a point on the section contour
with its co-ordinates (y, z; o), where o is the sectorial co-ordinate of the point used in Vlasov’s
model for non-uniform torsion. Based on the usual assumptions of the theory of thin-walled
elements, the displacement components of M can be derived from those of the shear centre, as
extensively demonstrated in Ref. [3]:

uM ¼ u � yðv0 cos yx þ w0 sin yxÞ � zðw0 cos yx � v0 sin yxÞ � oy0x; ð1Þ

vM ¼ v � ðz � zcÞsin yx � ðy � ycÞð1� cos yxÞ; ð2Þ

wM ¼ w þ ðy � ycÞsin yx � ðz � zcÞð1� cos yxÞ; ð3Þ

where differentiation with respect to the axial co-ordinate x is denoted by (0). Now recall that
Vlasov’s relations can be obtained from (1) to (3) using the approximation (cos yx ¼ 1) and
(sin yx ¼ yx) and disregarding the resulting non-linear terms. In beam theory, it is admitted that
the axial displacement uM is much smaller than vM and wM : Based on this assumption, the Green
strain-tensor components are simplified to

exx ¼ u0
M þ 1

2
ððu0

MÞ2 þ ðv0MÞ2 þ ðw0
MÞ2ÞEu0

M þ 1
2
ððv0MÞ2 þ ðw0

MÞ2Þ; ð4Þ

exy ¼
1

2
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Fig. 1. An open section beam with displacement and load components.

F. Mohri et al. / Journal of Sound and Vibration 275 (2004) 434–446 435



The insertion of relationships (1)–(3) into (4)–(6) leads to the following expressions:

exx ¼ e1 þ e2 ð7aÞ

in which

e1 ¼ u0 � yðv00 cos yx þ w00 sin yxÞ � zðw00 cos yx � v00 sin yxÞ � oy00x; ð7bÞ

e2 ¼ 1
2
ðv02 þ w02 þ R2y02x Þ � yCy

0
xðw

0 cos yx � v0 sin yxÞ þ zCy
0
xðv

0 cos yx þ w0 sin yxÞ; ð7cÞ

exy ¼ �
1

2
z � zC þ

@o
@y

� �
y0x; exz ¼

1

2
y � yC �

@o
@z

� �
y0x; ð8; 9Þ

where

R2 ¼ ðy � yCÞ
2 þ ðz � zCÞ

2:

2.2. Variational formulation and equations of motion

The governing static and dynamic equations of geometrically non-linear theory of thin-walled
structures can be obtained from the variational formulation of the strain energy, the external load
work and the kinetic energy. The variation of the strain energy of the system has been derived and
is given by

dU ¼
Z

L

Nðdu0 þ dv0ðv0 þ yCy
0
x sin yx þ zCy

0
x cos yxÞ þ dw0ðw0 � yCy

0
x cos yx þ zCy

0
x sin yxÞÞ dx

þ
Z

L

NdyxðyCðw0y0x sin yx þ v0 y0x cos yxÞ þ zCðw0y0x cos yx � v0y0x sin yxÞÞ dx

þ
Z

L

Ndy0xðyCð�w0 cos yx þ v0 sin yxÞ þ zCðv0 cos yx þ w0 sin yxÞÞ dx

�
Z

L

Myðdw00 cos yx � dv00 sin yxÞ dx þ
Z

L

Myðw00 sin yx þ v00 cos yxÞdyx dx

þ
Z

L

Mzðdv00 cos yx þ dw00 sin yxÞ dx þ
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L

Mzðw00 cos yx � v00 sin yxÞdyx dx

þ
Z

L

Body
00
x dx þ

Z
L

MRy
0
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0
x dx þ

Z
L

Msvdy
0
x dx; ð10Þ

where N is the axial force, My and Mz are the bending moments, Bo is the bimoment and Msv is
the St-Venant torsion moment and MR is a higher order stress resultant. They are defined in Ref.
[3]. Various types of external loads may be applied to the element. The external load can be
expressed by the components qx; qy and qz and a torsion moment mx: The virtual work due to the
external loads is given by

dW ¼
Z

L

ðqxdu þ qydv þ qzdw þ mxdyxÞ dx: ð11aÞ
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Here, the torsion moment mx is related to load eccentricities qz from the shear centre as indicated
in Fig. 1 and is formulated as demonstrated in Ref. [4] by

mx ¼ qzðey cos yx � ez sin yxÞ ð11bÞ

in which ey and ez are the eccentricities of the applied load qz with respect to the shear centre. The
qz load may induce torsion moment in first or second order considerations, depending on the
eccentricities ey and ez: According to (11b), the virtual work (11a) becomes:

dW ¼
Z

L

ðqxdu þ qydv þ qzdw þ qzðey cos yx � ez sin yxÞdyxÞ dx: ð11cÞ

The kinetic energy of a straight thin-walled beam with constant density is given by

T ¼
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where r is the material density and m denotes the mass density of the element. Based on
relationships (1)–(3), and after neglecting the rotary inertia terms, the kinetic energy is

T ¼
1

2
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where I0 is the polar moment of inertia. The variation of the kinetic energy is then formulated and
ordered with respect to the virtual displacement components du; dv; dw and dyx:

dT ¼
Z
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�
dx: ð14Þ

In order to derive the dynamic motion equations, Hamilton’s principle is used:

d
Z t2

t1

ðU � T � W Þ dt ¼ 0: ð15Þ

After some time integrations by parts in the resulting equation and straightforward necessary
calculations, the following equations of motion are obtained in elastic domain when the non-
linear terms are considered until order 3:

�
@N

@x
¼ qx; ð16aÞ
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m
d2v

dt2
þ zc
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m
d2w

dt2
� yc

d2yx
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þ EIy wð4Þ þ 3w0w00w000 þ w003 þ

wð4Þw02
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00
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d2v

dt2
� yc

d2w

dt2

� �
þ EIoy

ð4Þ
x � GJy00x �
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2
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00
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00
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where E and G are the elastic constants. Iy and Iz are the inertial moments of the section. In
Eq. (16d) J; Io and It denote, respectively, the St Venant, the warping and the higher order
shortening constants. The resulting equations of motion (16) have been established by
approximating the circular functions ðcos yx ¼ 1� 1

2
y2x; sin yx ¼ yx � 1

6
y3xÞ: Non-linear relation-

ships between bending moments and curvatures are considered. Assuming static displacements,
these equations are reduced to the ones developed for the post-buckling analysis of thin walled
elements under axial and lateral loads. In dynamic analysis, these equations permit one to study
on the one hand, the linear vibration of beams when the non-linear terms and loads are
disregarded. On the other hand, they allow the investigation of small vibration analyses around
pre- and post-buckled states which is the aim of this paper non-linear free vibrations as well as
forced vibration of thin-walled beams can also be studied.

2.3. Reduced differential system for simply supported beams

For simplicity, consider simple boundary conditions. For simply supported beams with free
warping, the first overall displacements modes in bending and torsion are assumed as

vðx; tÞ ¼ v0ðtÞsin p
x

L

� �
; wðx; tÞ ¼ w0ðtÞsin p

x

L

� �
; yðx; tÞ ¼ y0ðtÞsin p

x

L

� �
; ð17a–cÞ

where v0ðtÞ; w0ðtÞ and y0ðtÞ are the associated displacement amplitudes which are time dependent.
Relationships (17) are commonly adopted as approximation for modes of simply supported
beams in both static and dynamic analysis [5]. More recently, Di Egidio et al. [6] use modes (17) in
non-linear and chaos dynamics. Based on Galerkin’s approach, the partial differential equations
derived in Eqs. (16a)–(16d) can be reduced to a non-linear coupled differential system in time
domain. After integrations and some reductions, the resulting bending and torsion equations of
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motion are obtained in compact form as

mL2

p2
d2

dt2
v0 þ zc

d2

dt2
y0

� �
þ Pz v0 þ

p2

8L2
v30

� �
� Pðv0 þ zcy0Þ þ ðPz � PyÞ

8

3p
w0y0 �

3

4
v0y

2
0

� �
¼ 0;

mL2

p2
d2

dt2
w0 � yc

d2

dt2
y0

� �
þ Py w0 þ

p2

8L2
w3
0

� �
� Pðw0 � ycy0Þ

þ ðPz � PyÞ
8

3p
v0y0 þ

3

4
w0y

2
0

� �
¼
32

p3
M0;

mL2

p2
I0
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dt2
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d2

dt2
v0 � yc

d2

dt2
w0

� �
þ I0Pyy0 þ

3p2

8

EIt

L2
y30;

� P I0y0 � ycw0 þ zcv0ð Þ þ ðPz � PyÞ
8

3p
v0w0 �

3

4
y0v20 þ

3

4
y0w2

0

� �
¼ M0

32

p3
ey �

8

p2
ezy0

� �
:

ð18a–cÞ

In this differential system, P is the compressive axial load which is assumed to be constant. M0

is the maximal bending moment resulting from the lateral load qz: Py; Pz, and Py are the buckling
loads of a simply supported element, bending and pure torsion. They are given by the following
relationships:

Py ¼
p2EIy

L2
; Pz ¼

p2EIz

L2
; ð19a;bÞ

Py ¼
1

I0

p2EIo

L2
þ GJ

� �
; M0 ¼ qz

L2

8
: ð19c;dÞ

Now recall that by neglecting the inertia terms in Eq. (18), the static post-buckling behaviour
under axial compressive load P can be derived, by putting (M0 ¼ 0). Similarly, the lateral post-
buckling behaviour under bending loads or equivalent bending moment M0 can easily be derived
by setting (P ¼ 0). System (18) can be expressed in a more compact form by using matrix
notations as

½M�f .Ug þ ½Ke�fUg þ fNðU;P;M0Þg ¼ fFg; ð20Þ

where fUgt ¼ fv0ðtÞ;w0ðtÞ; y0ðtÞg
t

½M� ¼
mL2

p2

1 0 zc

0 1 �yc

zc �yc 1

2
64

3
75 ½Ke� ¼

Pz 0 0

0 Py 0

0 0 I0Py

2
64

3
75; ð21a;bÞ
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fNðU;P;M0g ¼

�Pðv0 þ zcy0Þ þ Pz
p2

8L2
v30

� �
þ ðPz � PyÞ
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w0y0 �
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� �
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3

4
w0y

2
0

� �

�PðI0y0 � ycw0 þ zcv0Þ þ
3p2

8

EIt

L2
y30 þ ðPz � PyÞ

8

3p
v0w0

�

�
3

4
y0v20 þ

3

4
y0w2

0

�
þ
8M0

p2
ezy0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð21cÞ

fFgt ¼ 0;
32M0

p3
;
32M0

p3
ey

� �
; ð21dÞ

where ½M� denotes the mass matrix and ½Ke� is the elastic stiffness matrix. The vector
fNðU;P;M0Þg includes the non-linear terms. It depends non-linearly on displacements and
linearly on the axial force P and on bending moment M0: The vector fFg is the external load
vector. The non-linear static and dynamic analyses of simply supported beams can be investigated
by the system (20). The linear vibration of thin-walled elements can be easily deduced and lead to
the well-known eigenfrequencies of thin-walled beams with open section derived in Vlasov’s
model. For this reason, they are not discussed here.

2.4. Static equilibrium and small vibration formulations

Based on static equilibrium equations derived from system (18), the post-buckling behaviours
of thin-walled elements under both axial and lateral loads have been investigated. To analyze the
small vibrations close to static equilibrium position, the displacements are assumed to be the sum
of a time-dependent and time independent solutions such as

v0

w0

y0

8><
>:

9>=
>; ¼

vs

ws

ys

8><
>:

9>=
>;þ

vdðtÞ

wdðtÞ

ydðtÞ

8><
>:

9>=
>; ¼ fUsg þ fUdg: ð22Þ

In the present study, the dynamic vector components fUdg are assumed to be small, but the
static solution vector fUsg; corresponding to the post-buckled state, are derived for moderate
magnitude. The dynamic solution represents a small vibration about a mean static equilibrium
configuration. The equations for static pre- and post-buckling equilibrium states are first obtained
by disregarding the inertia terms in Eq. (20) in which case the solution to the resulting equation is
fUsg: The governing equations for small vibrations around a static equilibrium state are derived
by substituting (22) into (20) and neglecting the resulting non-linear terms in fUdg: The solution
procedure adopted to investigate the static solutions and the eigenfrequencies around a known
static solution are then ordered in the following system:

½Ke�fUsg þ fNðUs;P;M0Þg ¼ fFg;

½M�f .Udg þ ½KtðUsÞ�fUdg ¼ f0g;

(
ð23a;bÞ
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where ½KtðUsÞ� denotes the tangent stiffness matrix which includes the elastic stiffness matrix ½Ke�
and the gradient of the vector fNg in the vicinity of fUsg: Now recall that fUsg is obtained by
solving numerically system (23a) and depends on the applied loads. The Newton–Raphson
iteration method is used for this purpose. The matrix ½KtðUsÞ� is built using the static solution
fUsg: System (23b) governs the small vibrations around a given static equilibrium state.
Assuming a harmonic motion with the frequency O; this equation is reduced to the eigenvalue
problem:

ð�O2½M� þ ½KtðUsÞ�ÞfUdg ¼ f0g: ð24Þ

Then, the numerical solution of Eqs. (23a) and (24) permits one to study the small vibration of
pre- and post-buckled thin-walled elements under axial and lateral loads.

2.5. Load–frequency interaction in the case of bisymmetric sections

The approach developed in the previous section can be easily applied for bisymmetric I sections.
Analytical closed form solutions can then be derived for the load–frequency interaction in the pre-
and post-buckling ranges. Consider a bisymmetric I section under a compressive load P:
According to relationships (18), with yc ¼ zc ¼ 0; the resulting non-linear vibration equations are
given by

mL2

p2
d2

dt2
v0 þ ðPz � PÞv0 þ Pz

p2

8L2
v30

� �
þ ðPz � PyÞ

8

3p
w0y0 �

3

4
v0y

2
0

� �
¼ 0;

mL2

p2
d2

dt2
w0 þ ðPy � PÞw0 þ Py

p2

8L2
w3
0

� �
þ ðPz � PyÞ

8

3p
v0y0 þ

3

4
w0y

2
0

� �
¼ 0;

mL2

p2
I0

d2

dt2
y0 þ I0Pyy0 þ

3p2

8

EIt

L2
y30 � PI0y0 þ ðPz � PyÞ

8

3p
v0w0 �

3

4
y0v20 þ

3

4
y0w2

0

� �
¼ 0:

ð25a-cÞ

Assuming a linear approximation and a harmonic motion with frequency O; the load–frequency
relationships can be carried out in the pre- and post-buckling regions. In the pre-buckling zone,
they are formulated with respect to the linear equations, that are uncoupled and lead to

O2
1 ¼ O2

z 1�
P

Pz

� �
; O2

2 ¼ O2
y 1�

P

Py

� �
; O2

3 ¼ O2
y 1�

P

Py

� �
; ð26a–cÞ

where Oy; Oz and Oy are the eigenvalues of the beam in bending and pure torsion:

O2
y ¼

p4EIy

mL4
; O2

z ¼
p4EIz

mL4
; O2

y ¼
p2

mL2I0

p2EIo

L2
þ GJ

� �
: ð27a–cÞ

In the post-buckling state, the load–frequency interactions are formulated around static
uncoupled solutions fvs; 0; 0g

t; f0 ;ws; 0g
t; f0; 0; ysg

t Consider the first Eq. (25a), the equation
for a small vibration around vs is

�O2 mL2

p2
þ ðPz � PÞ þ 3

p2

8L2
Pzv

2
s

� �
vd ¼ 0: ð28Þ
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The non-trivial static solution fvs; 0; 0g
t is obtained by omitting the inertia term in Eq. (25a)

and leads to:

v2s ¼
8L2

p2
ðP � PzÞ

Pz

¼
8L2

p2
P

Pz

� 1

� �
: ð29Þ

The insertion of vs in Eq. (28) gives to the load–frequency relationship in the post-buckling
range:

O2
1 ¼ 2O2

z

P

Pz

� 1

� �
: ð30aÞ

Similar analytical calculations are done on Eqs. (25b) and (25c) and yield to:

O2
2 ¼ 2O2

y

P

Py

� 1

� �
; O2

3 ¼ 2O2
y

P

Py
� 1

� �
: ð30b; cÞ

The (O2=P) relationships (26a)–(26c) and (30a)–(30c) are then linear and this is in agreement
with the famous Southwell plot [7], that remains valid again in post-buckling range.

3. Numerical results

The numerical results presented here concern the free vibrations of pre-buckled and post-
buckled elements under compressive or lateral bending loads. Bisymmetric and mono-symmetric
steel sections are considered with Young’s modulus (E ¼ 210GPa), shear modulus
(G ¼ 80:77GPa) and a density (r ¼ 7800). For the sake of clarity, static equilibrium paths are
first presented and the eigenvalue variations of the element following the equilibrium curves are
discussed. More details on the post-buckling equilibrium paths can be found in Refs. [3,4].

3.1. Vibration of bisymmetric I section under compression

The vibration of bi-symmetric I section have been studied in both the pre- and post-buckling
states. All the studied cases have demonstrated that the variation of eigenfrequencies in bending
and torsion agree well with relationships (26a), (26c) and (30a), (30c). For this reason they are not
presented here. Nevertheless, the analytical load–frequency relationships are derived without any
imperfections and are then related to the perfect structure, consider the imperfection effects on
post-buckling and eigenvalue variation. The torsion equilibrium curve is selected for this analysis.
Equilibrium curves are presented in Fig. 2a, for some initial torsion imperfections (denoted yi). In
the presence of initial torsion imperfections, the beam behaviour becomes highly non-linear but
remains stable. The variation of the pure torsion eigenvalue O along the equilibrium curves
for different imperfections follow in Fig. 2b. In the perfect case, the eigenvalue decreases from
the pure torsion eigenvalue Oy ¼ 163 to zero when the buckling load Py ¼ 1768 is reached. This
eigenvalue increase in the post-buckling state and remains positive. In the presence of
imperfections, all the pure torsion eigenvalues decrease in the pre-buckling state from Oy to a
minimum non-vanishing value, which is a function of the imperfection amplitude, and then
increases in the post-buckled state.

ARTICLE IN PRESS

F. Mohri et al. / Journal of Sound and Vibration 275 (2004) 434–446442



3.2. Vibration of T section beams under compression

The second example concerns a T beam under compressive load. The buckling behaviour of this
section has been investigated and shows that the first buckling mode is always flexural–torsional.
The post-buckling equilibrium curve (P; y0) is presented in Fig. 3a for a beam of length L ¼ 2m.
One can remark that the torsion angle is present only in the post-buckling state and the
equilibrium path is symmetric. The flexural–torsional buckling load value is 222 kN. A limit point
is present in the post-buckling state for a load P ¼ 290 kN. For the vibration analysis, the
eigenvalues of the beam have been computed following the equilibrium path from P ¼ 0 until the
buckling load P ¼ 222 kN. In the post-buckling region, only the positive part of the curve (y0 > 0)
is considered.
The variation of the lower eigenvalue with respect to the load P is shown in Fig. 3b in both pre-

and post-buckling states. In the pre-buckling zone, this eigenvalue decreases linearly from the
fundamental frequency (191.49)2 to zero when the buckling load P ¼ 222 kN is reached. In the
post-buckling region, this value increases non-linearly in the stable part of the curve until the limit
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point in which ðOÞ2 vanishes again and then becomes negative in the unstable part of the curve. In
fact, in the unstable zone, the eigenvalue is a pure complex number. In the pre-buckling region,
the variation is linear and is in good agreement with the analytical solutions (26). In the post-
buckling region all the equation of motions are non-linear and highly coupled. The analytical
solutions (30) are no longer valid. This test shows that at a bifurcation or a limit point, the lower
eigenvalue vanishes. In the post-buckling region, the lower eigenvalue is real in presence of stable
equilibrium path and becomes pure complex imaginary in the unstable region. This is in
accordance with the well-known Liapunov stability criteria.

3.3. Vibration of beams in lateral buckling behaviour

The last example is devoted to the vibration of bisymmetric I beams in lateral buckling.
Consider a beam under uniformly distributed lateral load. The load is applied with initial
eccentricity ez from the shear centre (Fig. 4a). The non-linear behaviour of such beams has been
investigated and it has been established that the lateral buckling load depends on the load
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eccentricity ez: The effect of this term on lateral buckling resistance of beams has been extensively
studied in literature and was called the load height parameter. For the present study, the
bisymmetric I section previously studied in Section 3.1 is considered with slenderness length
L ¼ 6m. According to the analytical solutions as formulated in Ref. [4], the lateral buckling
moments of this section beam are, respectively, 132 kNm when the load is applied on the bottom
flange, 98 kNm for a load on the shear centre and 73 kNm for a load on the top flange.
In linear vibration, the fundamental eigenfrequencies are computed according to relationships

(36a)–(36c), are, respectively, Oz ¼ 48:13; Oy ¼ 90:02 and Oy ¼ 175:35 rad/s. The moment-
deflection curves ðM0;w0Þ in the pre- and post-buckling regions are presented in Fig. 4a for the
three load heights. In the pre-buckling state, this curve is linear and independent of the load height
parameter. In the post-buckling region, the load height parameter affects highly the beam
response. The variations of the lower eigenvalue as a function of the bending moment M0 are
presented in Fig. 4b in the pre- and post-buckling zones, for the three load heights. In the
pre-buckling region, these curves decrease from the lower fundamental eigenvalue O2

z ¼ 48:132 to
zero, when the buckling moment is reached, depending on the position of the load height. The
buckling moments associated to the static behaviour are well reproduced in the load–frequency
interaction. Due to the unstable nature of the post-buckling state, the square of the eigenvalues
becomes negative in the post-buckling region. The relating frequencies are then pure complex
imaginary. The load–frequency curves are not linear and depend on the load height parameter in
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both pre- and post-buckling regions. Relationships (42) and (45) are no longer valid in the case of
beams in lateral buckling. Attard et al. [2] investigated the load frequency interaction of
cantilevers as a function of the load height parameter in the pre-buckling state and observed the
same phenomenon. Their study is restricted to the pre-buckling state.

4. Conclusions

The vibration behaviour of pre-buckled and post-buckled thin-walled beams with open sections
has been investigated. Based on a non-linear model which accounts for non-linear warping,
bending–bending and torsion–bending couplings, the non-linear dynamic equations have been
formulated. The model has been applied to the investigation of load–frequency interaction of
struts under compression or beams under lateral bending loads, in pre- and post-buckling ranges.
In the case of a strut under compressive load P, closed-form linear eigenvalue curves (O2=P)

have been obtained, in the pre- and post-buckling regions, especially for bi-symmetric sections.
This linearity also holds good in the case of mono-symmetric sections, but only in the pre-
buckling region. In the post-buckling zone, the governing equilibrium equations of mono-
symmetric sections are non-linear and highly coupled, so the derivation of the analytical solutions
can be cumbersome. For this reason, only numerical solutions are discussed. The load–frequency
interaction has to be analyzed carefully, according to section shape and beam length. As expected,
the lowest eigenvalue O2 decreases linearly in the pre-buckling region and vanishes at buckling or
limit load. Clearly, in the post-buckling range, the load–frequency curve depends on the nature of
the equilibrium path. The eigenvalue O2 is positive when the solution is stable and negative when
it is unstable. Beams with bisymmetric I sections and preloaded in lateral buckling have also been
investigated. In this case, the eigenfrequencies are load-height dependent and the load–frequency
curves are non-linear even in the pre-buckling range. Moreover, the first eigenvalue is negative in
the post-buckling range, which means that the equilibrium is unstable. It is then proved that the
load–frequency interaction is more significant for the lower eigenvalue of the beam.
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